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1. Introduction 
 

Mathematical calculations and practical experiments 
show that a composite, formed by a repetitive succession 
of media with different dielectric permittivities, named 
also Photonic Crystal, possesses band gaps and as a 
result the electromagnetic field, with frequencies inside 
those gaps, can not propagate through it [1-4]. 

Therefore, photonic crystals can be defined as 
periodic media that have the property of forbidden 
frequency ranges, a radiation with the wavelength in 
their frequency gaps being unable to propagate inside 
them. The most usual and interesting type of photonic 
crystal, to date, is a dielectric material characterized by a 
cyclic electric permittivity that repents in space with a 
period comparable, as linear dimensions, with the 
wavelength of the radiation interacting with the 
dielectric.  

No simple formula, able to predict the size and 
position of photonic crystals band gaps, exists [5], [6]. 
Unfortunately, when it comes to establishing the 
dispersion diagrams of this type of periodic structures, 
various articles present the results specifying that they 
have been obtained using a certain numerical method 
(for instance PWM – Plane Wave Method) implemented 
with a software conceived by the author, which if 
available is not well documented and written in a 
language you are not familiar with. For this reason, 
programs that calculate the structures of forbidden bands 
are hard to integrate in your own software, designed to 
study various properties of photonic crystals, and in 
conclusion, many people have to write their own piece 
of code able to calculate the dispersion diagrams, in 
other words, to solve Maxwell Equations for a periodic 
dielectric medium.  

The purpose of the present paper is to start from 
electromagnetism equations and finally get a 
mathematical set of expressions that can be easily 
implemented in software, especially Matlab, with the 
goal of obtaining dispersion diagrams for any 2D 
dielectric photonic crystal having square symmetry. The 

case of 1D crystal [7] can easily be particularized from the 
square one. 

 
 
2. Atemporal wave equation in square 

symmetry photonic crystals 
 

In classical physics, the propagation of electromagnetic 
waves in substance is studied using Maxwell Equations.  
Photonic crystals, being a repetitive succession of media, 
each of them extending in a volume many orders of 
magnitude greater than the dimensions of atoms, are 
perfectly suitable to be treated with these equations whose 
general form is: 

 

t∂
∂

−=×∇
BE ,                                   (1) 

0=⋅∇ B ,                                          (2) 

),( t
t

rjDH +
∂
∂

=×∇                          (3) 

( )t,rD ρ=⋅∇ ,                                 (4) 

where: E=E(r,t) is the intensity of the electric field, B=B(r,t) 
the magnetic induction, H=H(r,t) the intensity of magnetic 
field, D=D(r,t) the electric induction, j(r,t) the current 
density and ρ(r,t) the electric charge density. 

In Cartesian coordinates, the position vector r has the 
expression r=xex+yey+zez, where ex,z,y are versors 
corresponding to x, y, z spatial directions. 

The quantities D and H are, in general, for an arbitrary 
medium, complicated function of the following four 
variables: t, r, E and B: 

 
( ) ( )BErHHBErDD ,;,,,;, tt == .                 (5) 

 
However, for an entire group of substances, relations                  
(5) turn into simple linear dependencies if the intensities of  
E and B are relatively small. Thus, 
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where: ε is the electric permittivity of the medium, µ - 
magnetic permeability, ε0, µ0 - electric permittivity and 
magnetic permeability of vacuum respectively and εr, µr 
- electric permittivity and magnetic permeability of the 
medium in respect to vacuum. Equations (1)-(4) can 
have an even simple form if none of the substances 
under consideration is magnetic, 
 

1=rµ ,                                   (7) 
and no density of electric charge or current exists, 
 

( ) ( ) 0,,0, == tt rrj ρ .                  (8) 
 
Conditions                                    (7) and (8) are met for 
the majority of dielectrics, at small intensities of electric 
and magnetic fields. Unfortunately, all simplifications 
end here because photonic crystals have position 
dependent electric permittivity in the form of a repetitive 
function of r: 

( ) ( )Rrr += rr εε , where R is the period. (9) 
 

Therefore, substituting relations             (6)-(9) into 
Maxwell Equations (1)-(4) and solving the system, two 
propagation equations: (10) and (11) and two conditions:                                                              
(12), (13) are obtained: 
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0=⋅∇ H ,                                                             (12) 
( )[ ] 0=⋅∇ Errε , (13) 

 
Equations (10) and (11) can be solved using the method 
of separation of variables. Thus, making the supposition 
that: 
 

( ) ( ) ( ) ( ) ( ) ( )tEtbtHta rErErHrH == ,)(,,)( , (14) 
 

where H(r), H(t) ;  E(r), E(t) are unknown functions, 
(10) can be rewritten as:   
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Also, if the constant ω is interpreted as a pulsation, 

the following notation can be made: 
 

fπω 2= .                              (16) 
 

 where f is a quantity interpreted as frequency. 

In consequence, (10) transform in two equations, one in 
r and the other in t: 
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Similar to the equation (17) corresponding to (10), the 

equation (11) has also an attemporal associate: 
 

( ) ( )[ ]( ) ( )rErE
r 2

21
cr

ω
ε
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The equations (17) and (19) are useful for calculating 

the dispersion diagrams of various photonic crystals and 
implicitly for establishing their structures of frequency gaps. 

Both of them are general and can be solved for the full 
3D case or simplifications in one or two dimensions. As 
stated in the beginning, this article deals only with the case 
where the medium, taken into consideration, is two-
dimensional, a particular situation that splits in two branches 
(due to the condition which tells that E and H are always 
perpendicular to each other).  

The first is the transverse electric (TE) possibility 
where E= Ez⋅ez which once replaced in (19) transforms it in                    
(20)  (the ez versor and z index will be considered implicit). 
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for TE modes.                        (20) 
 

The relation (20) belongs to a category of equations that 
can be solved using the Bloch-Floquet theorem which (for 
the current situation) states that: if 1/εr(x,y) is a periodic 
function then: 
 

( ) ( ) ),(, yxgeyxE ykxkj yx += ,                  (21) 
 
where g(x,y) is an unknown repetitive function having the 
same period as 1/εr(x,y).  

In the particular situation of photonic crystals, εr(x,y) is 
by definition periodic which imply that 1/εr(x,y) is also 
cyclic with  the same period as εr(x,y). 

The second possibility is the transverse magnetic (TM) 
case, when H(r)=Hz⋅ez. This time, the equation (19) is used.  
First of all, the quantity ( )( ) ( )[ ]rHr ×∇×∇ rε1  needs to be 
evaluated. Thus, 
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Therefore, the following equation in H is obtained 

(where the z index and ez  versor are considered implicit): 
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which can be used for calculating dispersion diagrams 
for TM modes.  
 

3. The Fourier Transform of electric 
permittivity in square symmetry 
photonic crystals 

 
The equation (20), with εr repetitive, can be solved 

by applying the Fourier Transform to both sides of the 
equality. In the case of photonic crystals with square 
symmetry the basic brick of the structure is a square, like 
in Fig. 1, and in consequence the periodicity of εr(x,y) 
can be mathematically written as in (24).  

The present paragraph gives a method for 
calculating the Fourier Transform of εr, 1/εr or in 
general, of any repetitive 2D function having a 

periodicity as that in  
 
Fig. 1Fig. 1. Once this transform is found, it can be 

used for solving equation (24). 
 

 
 
Fig. 1. Photonic crystal with square symmetry. 

 

( ) ( )ayaxyx rr ++= ,, εε . (24) 
 

By definition, a square integrable function with n 
variables can be written as an integral sum in the following 
form [8]: 
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where p is the Fourier Transform of  f. Consequently, using  
(25), where f is replaced by εr, both members of the equality 
(24) can be expanded as follows: 
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which is satisfied if: 
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As a result, εr(x,y) is constrained to have the decomposition: 
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If we multiplying both members with  
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a
j

e
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π

and 
integrate over one period (see Fig. 1), the expression (28) 
turns in:
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In conclusion: 
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Using (31), equations (20) and (23) can now be solved 

(see the next paragraph). 
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4. Method for calculating dispersion 
diagrams for TE and TM modes 

 
TE modes: As εr

-1(x,y) is a function with the same 
periodicity like εr(x,y), it also can be written in a form 
similar to (28). Thus, 
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Also, ( ) ( ) ),(, yxgeyxE ykxkj yx +=  expands as follows: 
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where
21 ,nnp and 

21,mmh are the coefficients of the two series.  

Thus, ( ) ( ) 2222 ,, yyxExyxE ∂∂+∂∂ can be written as: 
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and so, (20) transforms into: 
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Multiplying both members of (34) with 
( ) ( )[ ]ymxmajea 21/22/1 ′+′− π  and  

integrating in respect to x and y over the interval [-a/2, a/2], 
the following equality is found:
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For an arbitrary ),( 21 mm ′′ pair, the majority of terms, at 
the left and right of the sign equal, will disappear and  
(36) simplifies to:  
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for TE modes                         (37) 

 
which represents a system of equations that, if solved, 
gives a set of eigen frequencies, ωk. 

In practice, the m indexes will be taken: 
2211 ,,, mmmm ′′  ∈ [-M, M] where M is a positive integer. 

For each of the (2M+1) x (2M+1) values of ),( 21 mm ′′  an 
equation like (37) exists, where the coefficients 

2211 , mmmmp −′−′ have indexes that vary in the interval [-2M, 
2M] and can be calculated (see (31)) with the formula: 
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where the following notations have been made: 
N=4M+1,  222111 , mmnmmn −′=−′= . 

In conclusion (39) with 2211 ,,, mmmm ′′  ∈ [-M, M] is 
a system of the form: 
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where S is a square matrix having (2M+1)4  elements of the 
type:  

( )22
, 2211

BAp mmmm +−′−′ ,                    (40) 
 

which can be calculated for any given 
yx kkmmmm ,,,,, 2211 ′′ and h is a column matrix possessing 

(2M+1) x (2M+1) elements, 
21,mmh , of unknown values. It 

can be noticed that (39) is satisfied, independently of h, if 
( ) 0det 22 =− cωS which leads to (2M+1)2 possible ωk. 
Therefore, for any given (kx, ky), (2M+1)2 values for ω 

are found and, in this way, the dispersion diagram ω=ω(kx, 
ky) is obtained. As can be remarked, a single pair of given 
(kx, ky) require solving a system of (2M+1)2 equations where 
for good precisions M have to be increased till no difference 
is observed between ω=ω(kx, ky) calculated with (2M+1)2 
and with (2(M+1)+1)2 equations. 

TM modes: The expression (37) is valid only for the TE 
modes. For finding its equivalent corresponding to the TM 
situation, the equation (23) have to be utilized as starting 
point. Using the same procedure as in the case of TE modes, 
the following expressions can be successively written: 
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The decompositions obtained from (41) and (42) 

together with (32) and (33) (where E(x,y) is replaced by 
H(x,y)) are introduced in (23)(23). After simplifying by 

ejk·r, multiplying by ( ) ( )[ ]ymxmajea 21/22/1 ′+′− π  and integrating 
in respect to x and y over the interval  [-a/2, a/2], the 
following equality results: 
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For an arbitrary pair ),( 21 mm ′′ , the majority of terms  from the left and right of the equal sign disappear and (43) 

(43) turns into: 
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where the same explanations as given for equation                          
(37), corresponding to the TE situation, remain valid.  

As already explained, by solving (37) and (44) 
dispersion diagrams, ω=ω(kx, ky), are obtained. It can be 
shown that, for photonic crystals with square symmetry 
(whose basic cell is described by the vectors a1 and a2 as 
in Fig. 2), a reciprocal cell, defined by b1, b2 (see Fig. 
3), exists in the spatial frequencies domain (dual space, 
D). Therefore, the periodicity ε(r)=ε(r+R) has a pair in 
the dual domain, ω(k)=ω(k+D), and in consequence it is 
enough to compute ω for k inside just one elementary 
cell D. More than that, if ε(r) has some symmetry inside 
the photonic crystal cell, then also ω(k) has symmetries 
inside D and this property further reduces the range of k 
for which ω have to be evaluated. In the particular cases 
of the crystals given as examples, in the following 
paragraph, it is sufficient to calculate the dispersion 
diagrams just for values of k lying inside the triangular 
domain LXM (see Fig. 3), called irreducible Brillouin 
zone. More, numerical calculations show that the worst 
scenario, with the smallest band gaps, happens for 
wavenumbers k along the contour LXML, and for this 
reason, diagrams ω=ω(k) will not be represented for the 
entire surface of the triangle LXM but just for the 
contour LXML.  
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Fig. 2. The vectors that describe normal space, R. 
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Fig. 3. The vectors that describe the dual space, D. LXML 
is  the  path  alongh  which  the dispersion diagrams will be  
                                      graphed. 

 
5. Dispersion diagrams and band gaps. 

Numerical results. 
 

Using (37) and (44) the dispersion diagrams for the TE 
and TM modes, corresponding to a few particular 
geometries of photonic crystals with square symmetry, will 
be calculated. Two configurations are studied. For each 
situation, the entry parameters are given in the description of 
the case, beneath the figure or diagram. The signification of 
these parameters is: 
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(b) f = the filling factor defined as the fraction between 
the surface of the geometric element and that of the 
entire cell. (c) fmax= maximum filling factor attainable. 
Also, for each case, some specific parameters as r (the 
radius of the circular element in Fig. 4)  and d (the 
length of the square edges, Fig. 9) are given. Another 
important parameter is N x N = (2M+1) x (2M+1) (see 
the explanations for the equation (37) that represents the 
number of discretisation elements in which the basic cell 
of the crystal is divided. 

Regarding the diagrams in Fig. 5, Fig. 8, Fig. 10,  Fig. 13 
a few explanations have to be given: (1) A scaled frequency, 
ωa/2πc, was represented on the y axis in order the dispersion 
diagrams could be read at any frequency and any elementary 
cell size. Thus, supposing that ωa/2πc=0.4 (see one of the 
diagrams) which is equivalent to fa/c=0.4 (ω=2πf) or 
a/λ=0.4, and knowing the crystal cell edge length, a=0.6 µm, 
then λ=1.5 µm which corresponds to f=66 THz. (2) Both 
transverse electric and magnetic diagrams have been 
represented on the same figure, for each crystal. The curves 
with dotted line correspond to TM modes and the ones with 
solid line to TE modes. Also, for clarity, the TM and TE 
gaps have been marked using color bands and, in the case of 
total forbidden frequency zones (for both modes), the gap 
was hatched with oblique lines. As can be seen from 
diagrams, various band structures are obtained when εra, εrb 
and the geometry of the dielectric atoms (circular, square 
shape) are varied.  

 

 
Fig. 4. Square symmetry photonic crystal with circular elements. 

 

 
 

Fig. 5. r=0.45a; εra=1; εrb=2; N×N=17×17. 
 

 
 

Fig. 6. r=0.45a; εra=1; εrb=4; N×N=17×17. 



816                                                                                      B. Lazăr, P. Sterian 
 

 
 

Fig. 7. r=0.45a; εra=1; εrb=8; N×N=17×17. 
 

 
 

Fig. 8. r=0.47a; εra=1; εrb=13; N×N=33×33 
 

 

 
 

Fig. 9. Square symmetry photonic crystal with square elements. 
 

 
 

Fig. 10. d=0.85a; εra=1; εrb=5; N×N=26×26. 

 
 

Fig. 11. d=0.85a; εra=1; εrb=13; N×N=26×26. 
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Fig. 12. d=0.35a; εra=5; εrb=1; N×N=26×26. 

 

 
Fig. 13. d=0.35a; εra=13; εrb=1; N×N=26×26 

 
6. Conclusions 

 
Systems (37) and (44) can be used for obtaining 

dispersion diagrams and implicitly band gaps for a 
variety of dielectric two-dimensional photonic crystals 
with square symmetry. Both systems are in a form that 
can be easily implemented in software, especially in 
Matlab where, due to the richness of the already existing 
subroutines, just a few program loops need to be written 
for computing the coefficients in (44) and (44) with 
which a square matrix is generated and finally the 
eigenvalues of it are extracted using a general function 
already available in Matlab. Each set of ω eigenvalues 
corresponds to a wavenumber, k=kxex+kyey, that can be 
chosen to vary along an arbitrary path or in a given 
domain. In practice, due to symmetry reasons, it is 
enough to take k along LXML path (see Fig. 2). 

 
 
 
 
 

As regarding the numerical examples, they are given just 
for demonstrative purposes, in order to show the correctness 
of the formula written in the current paper. For a thorough 
investigation, on how the size of certain band gaps are 
affected by the contrast between εra, εrb and other parameters 
of the crystal cell, many diagrams have to be computed 
while a single parameter is varied in a certain range of 
interest. 
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